Data Analysis Tutorial

Follow this step-by-step guide to begin analyzing your adopted float's data.

In this tutorial, we'll use data from a single profile. Similar steps can be applied to all of the float's data, or to data collected from multiple floats.

Step 1. Follow the data access tutorial to download your float's data

Watch the Data Access tutorial on the Adopt-a-Float "Data Explorer" page to download float data

And check out the the "Introduction to Biogeochemical Properties" lesson.

Step 2. Download and open data from a single float profile

Follow step 5 in the data access tutorial to download data from a single profile.

Click on the e-mail link to download the data. The data will be packaged in a zipped file (.tar.gz). Unzip the file, and then open the CSV file.

In this tutorial, we will use Microsoft Excel to open and analyze the data. You may also open the data in Google Sheets, for example.

<u>NOTE to teachers</u>: it may take several minutes or hours for the data link to become available. Consider downloading the data ahead of class.

Step 3. Begin exploring the data in M/S Excel

The data will look something like this:

	Α	В	С	D	E	F G		Н	1	J	К	L	M	N	0
1	PLATFORM_CODE	DATE (YYYY-MM-DDTHH:MI:SSZ)	DATE_QC	LATITUDE (degree_north)	LONGITUDE (degree_east)	POSITION_QC PRES (decise	oar) P	PRES_QC	SAL (psu) PSAL_QC	TEMP (degree_Celsius)	TEMP_QC	DOX2 (micromole/kg)	DOX2_QC	CPHL (milligram/m3)
2	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	-0.2	1	35.09	4 1	16.996	1			
3	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	0.5	1	35.09	3 1	17.015	1			
4	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	1.6	1	35.09	2 1	17.016	1			
5	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	2.6	1	35.09	3 1	17.016	1			
6	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	3.5	1	35.09	3 1	17.017	1			
7	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	4.5	1	35.09	4 1	17.016	1			
8	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	5.5	1	35.09	3 1	17.017	1			
9	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	6.4	1	35.09	4 1	17.017	1			
10	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	7.5	1	35.09	3 1	17.017	1			
11	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	8.6	1	35.09	3 1	17.018	1			
12	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	9.5	1	35.09	3 1	17.018	1			
13	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	10.6	1	35.09	3 1	17.018	1			
14	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	l1.5	1	35.09	3 1	17.019	1			
15	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	12.5	1	35.09	4 1	17.019	1			
16	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	13.5	1	35.09	3 1	17.018	1			
17	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	14.4	1	35.09	4 1	17.018	1			
18	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	15.5	1	35.09	4 1	17.02	1			
19	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	16.5	1	35.09	5 1	17.02	1			
20	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	17.5	1	35.09	4 1	17.02	1			
21	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	18.4	1	35.09	4 1	17.02	1			
22	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	19.5	1	35.09	4 1	17.02	1			
23	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	20.4	1	35.09	4 1	17.02	1			
24	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	21.5	1	35.09	4 1	17.02	1			
25	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	22.5	1	35.09	3 1	17.019	1			
26	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	23.4	1	35.09	3 1	17.019	1			
27	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	24.5	1	35.09	4 1	17.02	1			
28	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	25.4	1	35.09	6 1	17.02	1			
29	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	26.4	1	35.09	6 1	17.019	1			
30	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	27.4	1	35.09	7 1	17.02	1			
31	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	28.4	1	35.09	6 1	17.02	1			
32	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 2	29.5	1	35.09	5 1	17.02	1			
33	4902598	2022-12-01T11:30:00Z	1	41.39796	-63.16444	1 3	30.5	1	35.09	5 1	17.02	1			
24	4003500	2022 12 01711-20-007	1	41 20700	C2 1C444		1 0	4	25.00	A 1	17 001	1			

+

PR_PF_4902598

Step 3 (continued). Begin exploring the data in M/S Excel

Each column contains a different piece of information. For now, the most relevant columns are: PRES (decibar), PSAL (psu), TEMP (degree_Celsius), DOX2 (micromole/kg), CPHL (milligram/m3)

The words before the brackets refer to the property, and the values in the brackets are the units of measurement.

<u>PRES</u> = pressure, or depth, measured in decibars. 1 decibar = 1 meter. Low values are near to the ocean surface, large values are deep in the ocean.

<u>PSAL</u> = salinity, or saltiness, measured in practical salinity units (PSU)

<u>**TEMP</u>** = temperature, measured in degrees Celsius</u>

<u>DOX2</u> = dissolved oxygen, measured in micromoles per kilogram of water

<u>CPHL</u> = chlorophyll, measured in milligrams per kilogram of water

Step 4. Make a profile plot

A **profile** represents a series of measurements of an ocean property from the surface (PRES = 0) to the maximum water depth (PRES = 2000 m for BGC-Argo).

To make a profile plot in Excel, select the data column of the property that you wish to view. Let's start with temperature.

/	A	В	С	D	E	F	G	Н	I	J	К	L	Μ	N	0
1	PLATFORM_CODE	DATE (YYYY-MM-DDTHH:MI:SSZ)	DATE_QC	LATITUDE (degree_north)	LONGITUDE (degree_east)	POSITION_QC	PRES (decibar)	PRES_QC	PSAL (psu) PSAL_QC	TEMP (degree_Celsius)	TEMP_QC	DOX2 (micromole/kg)	DOX2_QC	CPHL (milligram/m3)
2	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	-0.2	1	35.09	4 1	16.996	1			
3	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	0.5	1	35.09	3 1	17.015	1			
4	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	1.6	1	35.09	2 1	17.016	1			
5	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	2.6	1	35.09	3 1	17.016	1			
6	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	3.5	1	35.09	3 1	17.017	1			
7	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	4.5	1	35.09	4 1	17.016	1			
8	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	5.5	1	35.09	3 1	17.017	1			
9	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	6.4	1	35.09	4 1	17.017	1			
10	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	7.5	1	35.09	3 1	17.017	1			
11	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	8.6	1	35.09	3 1	17.018	1			
12	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	9.5	1	35.09	3 1	17.018	1			
13	4902598	3 2022-12-01T11:30:00Z	1	41.39796	-63.16444	1	10.6	1	35.09	3 1	17.018	1			
14	4902598	2022-12-01T11-30-007	1	41 39796	-63 16444	1	11 5	1	35.09	3 1	17 019	1			

K1 $f_x \to f_x$ TEMP (degree_Celsius)

Next, click on "Insert" (located at the top of the Excel menu bar), then "XY Scatter". Select the first plot option.

Home Insert Draw Page Layout Fo	ormulas Data Review	View 🛛 Tell me						🖻 Share	Comments
PivotTable Recommended Table PivotTables Table PivotTables	tures Shapes Icons	H Get Add-ins ♥ ↓ ↓ My Add-ins ♥ R	Recommended Charts		aps PivotChart	Sparklines Image: Slice	eer Dink	New Text	• \bigcap • Symbols
K1 \clubsuit \times f_x TEMP (degree_Celsiu	ius)			Scatter					1
A B	C D	E	F G						0
1 PLATFORM_CODE DATE (YYYY-MM-DDTHH:MI:SSZ) DA	ATE_QC LATITUDE (degree_north) I	LONGITUDE (degree_east) PC	OSITION_QC PRES (d	° °	8 9		8	C	CPHL (milligram/m3)
2 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1	• •	(a			\sim	
3 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1	· · · ·	0.00		0 - 0		
4 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
5 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
6 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1	Scatter					
7 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
8 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
9 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
10 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
11 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
12 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
13 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1						
14 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1	11.5 1	35.093 1	17.019	1		
15 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1	12.5 1	35.094 1	17.019	1		
16 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1	13.5 1	35.093 1	17.018	1		
17 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1	14.4 1	35.094 1	17.018	1		
18 4902598 2022-12-01T11:30:00Z	1 41.39796	-63.16444	1	15.5 1	35.094 1	17.02	1		

A chart, similar to this one, will appear.

But, it's not very useful at this point...

Data Analysis Tutorial

To modify the plot, right-click on the plot and click on "Select Data..."

|--|

Change the X values to the temperature column data.

Change the Y values to the pressure column data.

Click "OK"

Select Da	ata Source	
Range Details		
Chart data range:		
The Chart Data Range is too complex Range is selected, it will replace all of	to be displa the series o	ayed. If a new Data on the Series Panel.
Legend entries (Series):		
Temperature	Name:	="Temperature"
	X values:	=PR_PF_4902598!\$K\$2 🔝
	Y values:	=PR_PF_4902598!\$G\$2 🔝
+ - Switch Row/Column		
Horizontal (Category) axis labels:		
Hidden and Empty Cells		
Show empty cells as: Gaps		O
Show data in hidden rows and colu	imns	
		Cancel OK

9

The plot is looking better!

But it's not very intuitive, and it's not clear what the axis values represent.

Step 5. Make the plot intuitive

In oceanography, profiles are typically displayed with the measured property of interest (e.g., temperature) on the horizontal (X) axis, and depth or pressure on the vertical (Y) axis. That's why, in step 4, we set the plot's X values to the temperature column, and the Y values to the pressure column.

Oceanographers display data this way because it's intuitive. Imagine looking at a slice of the ocean from the side. As you look up-and-down that slice, it's like you're moving from shallow to deep depths.

So, the plot we currently have (on the previous page) is not very intuitive, since high depth values are at the top, and low depth values are at the bottom.

Step 5 (continued). Make the plot intuitive

To make the plot more intuitive, right-click on Y-axis numbers, and select "Format Axis"

Tick the box next to "Values in reverse order" to display shallow values at the top, and deep values at the bottom.

Then, set the minimum and maximum bounds to 0 and 2000 m, respectively.

Now the plot looks more intuitive!

Image: 1 Image: 1 <thimage: 1<="" th=""> <thimage: 1<="" th=""> <thi< th=""><th>G</th><th>Н</th><th>I</th><th>J</th><th>К</th><th></th><th>L</th><th colspan="4">Format Axis</th></thi<></thimage:></thimage:>	G	Н	I	J	К		L	Format Axis			
Temperature Axis Options Text Options Axis Options Text Options Axis Options Text Options <th colspan="2</td> <td colspan="7"></td> <td></td> <td></td> <td></td>											
2 4 6 8 10 12 14 16 16 100 100 100 100 100 100 100 100 1200 100			Ter	nperature				Axis Options	Text Op	tions	
1 1	0	2	4 6	8 10	12 14	16	18		long op		
200 400 400 400 400 400 400 400 400 400 1000 1000 1000 1000 1000 1400 1000 1000 1000 1000 1400 1000 1000 1000 1000 1400 1000 1000 1000 1000 1400 1000 1000 1000 1000 155 1 35.094 1 17.02 155 1 35.094 1 17.02 155 1 35.094 1 17.02 195 1 35.094 1 17.02 195 1 35.094 1 17.02 125.1 35.094 1 17.02 22.5 1 35.094 1 17.02 22.4 1 35.096 1 17.019 22.4 1 35.096 1 17.02 23.4 1 35.095 1 17.02 23.4 1 35.095							_				
400 ✓	200						- 1				
600 ✓ Axis Options 100 ✓ Axis Options 1400 ✓ Axis Options 1400 ✓ Axis Options 1400 ✓ Axis Options 1400 ✓ Axis Options 155 1 155 1 155 1 155 1 155 1 155 1 165 1 177.5 1 184 1 135.094 1 17.02 1 184 1 135.094 1 17.02 1 19.5 1 135.094 1 17.02 1 22.5 1 35.093 1 17.02 1 23.4 1 35.095 1 17.02 1 25.4 1 35.095 1 17.02 1 25.1 35.095 1 25.1 35.095 1 </td <td>400</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 11</td> <td></td> <td></td> <td></td>	400						- 11				
800 0 0 1200 1 1 14.4 1 35.094 1 17.018 15.5 1 35.094 1 17.02 16.5 1 35.094 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.094 1 17.02 22.5 1 35.094 1 17.02 22.4 1 35.096 1 17.02 22.5 1 35.096 1 17.02 28.4 1 35.095 1 17.02 29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 33.6 1 35.095 1 17.02 33.6	600							 Axis Options 			
Bounds 13.5 1 35.093 1 17.018 14.4 1 35.094 1 17.018 15.5 1 35.094 1 17.02 16.5 1 35.094 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.094 1 17.02 23.4 1 35.095 1 17.02 24.5 1 35.096 1 17.02 25.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02	800										
1300 1 1/101 13.5 1 35.093 1 1/101 14.4 1 35.094 1 17.02 16.5 1 35.094 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.093 1 17.02 22.4 1 35.093 1 17.02 23.4 1 35.096 1 17.02 24.5 1 35.096 1 17.02 25.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.02	1000						- 11	Poundo			
1400 1 <td>1200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Boullus</td> <td></td> <td></td>	1200							Boullus			
µão µão µão 13.5 1 35.093 1 17.018 14.4 1 35.094 1 17.02 16.5 1 35.094 1 17.02 16.5 1 35.094 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 22.5 1 35.093 1 17.019 23.4 1 35.093 1 17.02 22.5 1 35.096 1 17.02 24.5 1 35.096 1 17.02 24.5 1 35.096 1 17.02 28.4 1 35.095 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 30.5 1 35.095 1 17.0	1400							Minimum	0.0		
J3.5 1 35.093 1 17.018 14.4 1 35.094 1 17.018 15.5 1 35.094 1 17.02 16.5 1 35.095 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.094 1 17.02 22.5 1 35.094 1 17.02 23.4 1 35.096 1 17.02 25.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.	1600								0.0		
13.5 1 35.095 1 17.018 14.4 1 35.094 1 17.018 15.5 1 35.094 1 17.02 16.5 1 35.095 1 17.02 17.5 1 35.094 1 17.02 19.5 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.094 1 17.02 23.4 1 35.096 1 17.02 25.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 32.5 1 35.095 1 17.02 32.5 1 35.0	1800							Maximum	2000.0		
13.5 1 35.093 1 17.018 14.4 1 35.094 1 17.018 15.5 1 35.094 1 17.02 16.5 1 35.095 1 17.02 17.5 1 35.094 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.093 1 17.019 23.4 1 35.096 1 17.02 25.4 1 35.096 1 17.02 28.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.021 32.5 1 3	2000										
14.4 1 35.094 1 17.018 15.5 1 35.094 1 17.02 16.5 1 35.094 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.093 1 17.019 23.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 27.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.021 31.6 1 35.095 1 17.021 32.5 1 3	- 13.5	1	35.093	1		17.018		Units			
15.5 1 35.094 1 17.02 16.5 1 35.095 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.093 1 17.019 23.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.021 32.5 1 35.095 1 17.021 32.5 1 35.095 1 17.021 32.5 1 3	14.4	1	35.094	1		17.018					
16.5 1 35.095 1 17.02 17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.019 22.5 1 35.093 1 17.019 23.4 1 35.094 1 17.02 24.5 1 35.096 1 17.02 26.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.02 32.5 1 35.095 1 17.021 33.5 1 35.095 1 17.021 33.5 1 35.095 1 17.021 33.5 1	15.5	1	35.094	1		17.02		Major	200.0	\mathbf{N}	
17.5 1 35.094 1 17.02 18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.093 1 17.019 23.4 1 35.093 1 17.019 24.5 1 35.096 1 17.02 26.4 1 35.096 1 17.02 27.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.02 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021 33.5 1 35.098 1 17.021 33.5 1	16.5	1	35.095	1		17.02		Minor			
18.4 1 35.094 1 17.02 19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.093 1 17.019 23.4 1 35.093 1 17.02 24.5 1 35.096 1 17.02 25.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.02 32.5 1 35.095 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	17.5	1	35.094	1		17.02		WITTOT	40.0	K)	
19.5 1 35.094 1 17.02 20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.093 1 17.019 23.4 1 35.093 1 17.02 24.5 1 35.096 1 17.02 26.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.02 32.5 1 35.095 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	18.4	1	35.094	1		17.02		Horizontal axis cross	00		
20.4 1 35.094 1 17.02 21.5 1 35.094 1 17.02 22.5 1 35.093 1 17.019 23.4 1 35.093 1 17.019 24.5 1 35.094 1 17.02 24.5 1 35.096 1 17.02 25.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.02 32.5 1 35.095 1 17.02 32.5 1 35.095 1 17.02 32.5 1 35.095 1 17.02 33.5 1 35.098 1 17.021 33.5 1 35.098 1 17.021	19.5	1	35.094	1		17.02		HUITZUILLAI AXIS CIUSS	63		
21.5 1 35.094 1 17.02 22.5 1 35.093 1 17.019 23.4 1 35.093 1 17.019 24.5 1 35.094 1 17.02 25.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 27.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.02 32.5 1 35.095 1 17.02 32.5 1 35.095 1 17.02 33.5 1 35.095 1 17.02 33.5 1 35.095 1 17.02 33.5 1 35.098 1 17.021	20.4	1	35.094	1		17.02		 Automatic 			
22.5 1 35.093 1 17.019 23.4 1 35.093 1 17.019 24.5 1 35.094 1 17.02 25.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 27.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	21.5	1	35.094	1		17.02					
23.4 1 35.095 1 17.013 24.5 1 35.094 1 17.02 25.4 1 35.096 1 17.019 26.4 1 35.096 1 17.02 26.4 1 35.096 1 17.02 27.4 1 35.096 1 17.02 28.4 1 35.095 1 17.02 29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	22.5	1	35.093	1		17.019		Axis value	0.0		
24.5 1 35.094 1 17.02 25.4 1 35.096 1 17.02 26.4 1 35.096 1 17.019 27.4 1 35.096 1 17.02 28.4 1 35.096 1 17.02 29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	23.4	1	35.095	1		17.019		Maximum axis valu	•		
23.4 1 33.090 1 17.02 26.4 1 35.096 1 17.019 27.4 1 35.097 1 17.02 28.4 1 35.096 1 17.02 29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.095 1 17.02 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	24.5	1	25.094	1		17.02			6		
20.4 1 35.090 1 17.013 Display units None Image: None 27.4 1 35.097 1 17.02 Display units None Image: None Im	25.4	1	35.090	1		17.02					
27.4 1 35.057 1 17.02 28.4 1 35.096 1 17.02 29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.094 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	20.4	1	35.090	1		17.019		Display units	None	•	
29.5 1 35.095 1 17.02 30.5 1 35.095 1 17.02 31.6 1 35.094 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	27.4	1	35.096	1		17.02					
30.5 1 35.095 1 17.02 31.6 1 35.094 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	20.4	1	35.095	1		17.02		Show display units	label on chart		
31.6 1 35.094 1 17.021 32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	30 5	1	35.095	1		17.02		Logarithmic scale	Base 10		
32.5 1 35.095 1 17.021 33.5 1 35.098 1 17.021	31.6	1	35.094	1		17.021		Logantinnic Scale	Dase		
33.5 1 35.098 1 17.021	32.5	1	35.095	1		17.021		Values in reverse o	rder		
	33.5	1	35.098	1		17.021					

Step 6. Clean up the plot

Let's clean up the plot by adding X- and Y-axis labels. Click on the chart, click "Chart Design" (located at the top of the Excel menu bar), then select "Add Chart Element" to add both horizontal and vertical axis titles. Give the axes appropriate labels and remember to include the units!

Step 6 (continued). Clean up the plot

Finally, adjust the plot appearance by clicking on different elements of the chart, and changing various options under the "Format" panel.

Н	ome	Insert	Draw	Page Layout	Formula	is Data	Review	View	Chart Des	ign Fo	orma	t Ç) Tell m	ne					
S	Series "	Temperati	ure" v Style	Insert Shapes	Abc	Abc A	Abc >	Shape Fill	•	4	A		A	> A Text F	· <u>A</u> ·	Bring Forwar	Send Send	Selection rd Pane	Reorder Objects
Cł	nart 1	$ \cdot \times$	$\checkmark f_x$	=SERIES("Temper	rature",PF	R_PF_490259	8!\$K\$2:\$K\$	51791,PR_PF	4902598!\$	G\$2:\$G\$1	791,	1)							
		А		В	С	D			E	F		(G	Н	1	J		К	L
1	PLATFO	RM_CODE	DATE (YYYY-	MM-DDTHH:MI:SSZ)	DATE_QC	LATITUDE (de	gree_north)	LONGITUDE	(degree_east)	POSITION	QC F	PRES (c	lecibar)	PRES_QC	PSAL (psu) PSAL_QC	TEMP (de	gree_Celsius)	TEMP_
2		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1	P	0.0		25.00			40.00	
3		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1					Temperature	e (deg. C)		
4		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1			0 2	4	6 8	10 12	14 16	18
5		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		0						5
6		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		200					8	
7		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		(190			88			
8		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		ф 600						
9		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		008 en		88				9
10		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		SS 1000						
11		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		L 1200						
12		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		1400 ebt						
13		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		□ 1600		1				
14		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		1800		4				
15		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		2000	I	Ψ.	_			
16		4902598	2022-12-01T	11:30:00Z	1		41.39796		-63.16444		1		13.5	1	35.09	3 1		17.018	5
17		1003500	2022 12 01T	11.20.007	1		41 20706		CO 16444		1		1//	1	25.00	1 1		17 010	5

Step 7. Move the chart to a new tab

Move the chart to a new tab in the Excel workbook by right clicking on the chart, and selecting "Move Chart." Select "New Sheet", and give the sheet an intuitive name, like "Temperature plot"

Move Chart											
Choose where you want the chart to be placed:											
New sheet: Temperature Plot											
Object in: PR_PF_4902598											
Cancel OK											

A new tab will appear at the bottom of the sheet.

Temperature plot PR_PF_4902598 +

Step 8. Explore the data in the plot

Now we have a plot that is intuitive, and clean! You can explore the data in a number of ways. One is by adjusting the Y-axis range in the "Format Axis" panel. You can, for example, change the values here to display data from the upper 200 m only.

Step 9. Explore the data statistics

You can also explore the data using basic statistics. Let's start by creating a new tab in the worksheet, called "Statistics", with the following contents:

C7	′ <u>≜</u> × √	f_X					
	А	В	С	D	E	F	
1		All data	0-200 m	> 200 m			
2	Average temperature						
3	Minimum temperature						
4	Maximum temperature						
5							
6							
7				1			
8							
9							
10							
11							Click on the + to create a new sheet
	Temperatur	e plot	Statistics	PR_PF_	4902598	+	

Step 9 (continued). Explore the data statistics

Now, we can determine what the average, minimum and maximum temperature values are within different parts of the profile. The following functions will be useful:

	All data	0-200 m	> 200 m		
Average temperature	=AVERAGE(PR_PF_4902598!K:K)	=AVERAGEIF(PR_PF_4902598!G:G,"<=200",PR_PF_4902598!K:K)	=AVERAGEIF(PR_PF_4902598!G:G,">200",PR_PF_4902598!K:K)		
Minimum temperature	=MIN(PR_PF_4902598!K:K)	=MINIFS(PR_PF_4902598!K:K,PR_PF_4902598!G:G,"<=200")	=MINIFS(PR_PF_4902598!K:K,PR_PF_4902598!G:G,">200")		
Maximum temperature	=MAX(PR_PF_4902598!K:K)	=MAXIFS(PR_PF_4902598!K:K,PR_PF_4902598!G:G,"<=200")	=MAXIFS(PR_PF_4902598!K:K,PR_PF_4902598!G:G,">200")		
Cala	^				
Caic maxii c	mum values from the temperatu num values from the temperatu data column (column K on the PR_PF_4902598 sheet)	when the pressure (depth) is less than or equal to 200. The "<=200" condition checks to see when values in column G (pressure) are below 200	when the pressure (depth) is greater than 200.		

The answer to those equations is as follows:

	All data	0-200 m	> 200 m
Average temperature	10.19	15.94	7.77
Minimum temperature	3.52	13.55	3.52
Maximum temperature	17.07	17.07	13.54

Step 10. Repeat steps 4-9 for other properties!

Temperature (deg. C)

Step 11. Save your progress

Up until now, we have been working in a CSV document. However, CSV files are not compatible with charts and multiple sheets.

To make sure that you don't lose your progress, save your worksheet as an .xlsx document. Click "File", "Save As". Change the file format to Excel Workboox (.xlsx), and save the file. Consider giving the file an intuitive name, to identify the profile number, date, and float name.

You can also save the profile plots by right clicking on a plot, and selecting "Save As Picture..."

Step 12. Try it for yourself!

Try these exercises for yourself, using your own float data, and repeat the steps using all of the float's data (follow step 6 in the Data Access Tutorial to download all of the float's data), or data from multiple floats (step 7).

Step 13. Try using alternative software tools.

For more advanced users, check out <u>these software tools</u> (www.go-bgc.org/getting-started-with-go-bgc-data – scroll down to "BGC Float Toolbox") designed to help you explore your data using *Python*, *R*, or Matlab computer languages.

